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The phonon-scattering cross section associated with isotopic clusters is evaluated from first principles and
used to estimate the reduction in thermal conductance of wide graphene samples. A strong sensitivity of the
thermal conductivity toward clustering is predicted for micrometer-sized samples at low temperatures. Impor-
tant differences are obtained between the atomistically computed cross section, and existing analytical approxi-
mations, emphasizing the importance of atomistic investigations of thermal transport. Finally, possible tech-
niques are suggested for synthesizing graphene containing isotopic clusters.
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I. INTRODUCTION

It is a known fact that impurity aggregates may scatter
low-frequency phonons much more efficiently than if they
were acting separately.1–3 This has been recently used to de-
velop thermoelectric materials of the “nanoparticle in alloy”
type, whereby the addition of nanoparticles reduces the al-
loy’s thermal conductivity dramatically.4,5 Although the basic
explanation is simple,5 accurate computations of the scatter-
ing cross section of the nanoparticles are lacking. Reference
6 proposed an interpolation approach to link between the
Rayleigh and geometric scattering limits associated with the
low and high frequencies, respectively. Reference 7 im-
proved on that crude model via Mie’s theory of scattering but
it still relied on the elastic medium approximation. It is clear
that further progress in the theoretical investigation of mate-
rials’ thermal conduction requires a fully atomistic approach
free of the simplifying assumptions employed to date. In
confined systems such as nanotubes, nanoribbons, or thin
nanowires, the Green’s-function approach presented in Refs.
8–10 is well suited. However, for extended two-dimensional
�2D� or three-dimensional systems, such an approach is not
feasible since the size of the slabs becomes intractable.

To overcome the issues above, here we present a general
formalism to compute the total scattering cross section due to
an arbitrary scatterer in an extended material, in a parameter
free, atomistic ab initio scheme. The method is illustrated for
the case of isotope scattering in graphene, a material of
strong interest nowadays due to its conceptual simplicity and
promising fields of application. The calculated cross sections
have a direct application in the evaluation of graphene’s ther-
mal conductivity, which is found to be strongly sensitive to
the size of the isotope cluster. At the end of the paper we
propose a possible method to synthesize graphene containing
isotopic clusters, which might allow to experimentally verify
the effects predicted.

II. ATOMISTIC COMPUTATION OF SCATTERING CROSS
SECTIONS

The goal of this section is to introduce a compact formu-
lation to compute the scattering cross section in a local basis

representation. This formulation is applicable both to phonon
scattering and to tight-binding electron scattering. In this pa-
per we only apply it to phonon scattering. The equations can
be directly derived for phonons, without the need to pass
through the electron formulation, using techniques such as
those in Ref. 11. Nonetheless, we find it simpler to make the
general derivation for the electronic case first and afterward
convert the equations to the phonon case.

The total scattering cross section in the electron-scattering
case can be expressed as12

� =
�

dE/dk
2��

kf

��k f�T+�E��k��2��Ef − E� , �1�

where �k� is the incident eigenstate and �k f� are the propa-
gating eigenstates of the unperturbed Hamiltonian. � is the
volume into which the wave functions are normalized. The T
matrix is defined as

T+�−� = V + VG+�−�V , �2�

where V is the perturbation operator and G is the perturbed
Green’s function.12 The total-cross-section expression can be
transformed into a more practical one. It suffices to use the
following identity:

T+ − T− = V�G+ − G−�V

= − 2�iV��
m

��Em − E���m���m��V �3�

=− 2�iV��
m

��Em − E��I + g+T+���m���m��I + T−g−��V ,

where g is the unperturbed Green’s function, � are the un-
perturbed eigenfunctions, and � are the eigenfunctions of
the full Hamiltonian. The above can be recasted as

T+ − T− = − 2�i�
m

T+��m���Em − E���m�T−, �4�

where we have used
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T+�−� = �I + T+�−�g+�−��V = V�I + g+�−�T+�−�� . �5�

Using this with Eq. �1� it is trivial to show that

� = −
2�

dE/dk
Im	�k�T+�E��k�
 . �6�

This is just the well-known “optical theorem,” expressed in a
matrix form ready to be evaluated.

It is now straightforward to translate the obtained expres-
sions to the scattering cross section of lattice waves or
phonons. Single-particle electron and phonon stationary
problems are completely equivalent, if one makes the substi-
tutions: E→�2 , H→K, where � is the phonon frequency
and K is the mass normalized force constants �FCs� matrix,13

Kij =
1

�MiMj

�2U

�ui � uj
, �7�

where U is the energy of the system, ui is the displacement of
the i degree of freedom, and Mi is the mass of the atom to
which this degree of freedom belongs. Thus for phonons

� =
�

2�vg
2��

kf

��k f�T+��2��k��2��� f
2 − �2�

= −
2�

2�vg
Im	�k�T+��2��k�
 . �8�

where vg is the group velocity of the incident phonon.

III. FIRST-PRINCIPLES CALCULATION OF FORCE
CONSTANTS

The force constants were extracted from first-principles
calculations. The VASP �Ref. 14� code was used to perform a
series of force-displacement calculations in a supercell of 48
atoms. We employed the projector augmented wave method
within the generalized gradient approximation �PAW-GGA�
with PW91 functional, with a 430 eV cutoff and 13 k points
within the irreducible zone. The range of the force constants
was restricted to the fourth neighbor. Since translational and
rotational invariances needed to be enforced in order to get a
physically sound set of force constants, small deviations
were obtained from the true value of the FCs obtained by
doing a finite difference calculation. The methodology to ex-
tract the FCs is explained in detail in a previous paper.15 It
basically reduces all the FCs present in the Taylor expansion
of the potential energy up to second order, by using the sym-
metry and invariance constraints to a few number of inde-
pendent FCs. The latter are extracted from the computed set
of force-displacement data from first principles, by using a
singular value decomposition.

We show the phonon dispersion and density of states in
Fig. 1. The results including up to four or up to ten nearest
neighbors are plotted together for comparison. The phonon-
dispersion curve for four nearest neighbors is already in good
agreement with the calculations including higher number of
neighbors. The dispersion compares well with other theoret-
ical calculations17 and with experimental measurements on
graphite.16 We note that the weak coupling between layers in

graphite makes graphene and graphite in-plane dispersions
almost identical.18

IV. NUMERICAL EVALUATION OF HARMONIC GREEN’S
FUNCTIONS

The total cross section has then been evaluated in the
harmonic approximation using the approach described
above, for isotope clusters of different sizes �Fig. 2.� The
most demanding computational step is the computation of
the perfect crystal’s harmonic Green’s-function matrix,
g��2�, in a region of real space large enough to contain the
impurity cluster. There are different ways of doing this. The
most straightforward option is based on the root-sampling
method.11 In this approach one first numerically computes
the phonon spectral density from the solution of the eigen-
value problem in q space, with Born-Von Karman boundary
conditions in the two directions parallel to the infinite
graphene sheet. This yields the imaginary part of the Green’s
function. Then one can use a Hilbert transformation to obtain
the Green’s-function’s real part.19 The disadvantage of this
approach is the very large number of q points one needs to

-200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ΓKMΓ

Fr
eq
ue
nc
y
(1
/c
m
)

DOS Kpoints

4 shells
10 shells

FIG. 1. �Color online� Phonon dispersion and density of states
obtained from the ab initio force constants keeping interactions to
four and ten nearest neighbors. Experimental measurements on
graphite from Ref. 16 are also shown for comparison.

FIG. 2. �Color online� Clusters with 6, 13, 20, and 30 13C iso-
topes �in blue�, employed in the calculations. The abscissa and or-
dinate axes, respectively, correspond to the z and x directions re-
ferred to in the text.
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consider in the Brillouin zone, in order to obtain accurate
results.

An alternative to this reciprocal-space approach is the re-
cursion method,20 which obtains the Green’s function di-
rectly in real space. This method is very well suited to dis-
ordered systems but it is not advantageous when dealing with
periodic systems. It is thus less efficient than the technique
we proceed to describe below.

Instead of the purely reciprocal-space root-sampling tech-
nique, or the purely real-space recursion method, we em-
ployed a hybrid computation scheme, making use of a well-
known renormalization technique. This method of computing
the Green’s function has been described in depth in Refs. 21
and 22, and we refer to those publications for additional
details. The approach uses a hybrid reciprocal-real space rep-
resentation for the system’s degrees of freedom. Considering
the graphene sheet to be laid parallel to the �x ,z� plane, we
employ the real-space representation along the z direction
but we use a reciprocal-space representation with a Born-Von
Karman boundary condition along the x direction. This per-
mits us to split the system into a set of independent one-
dimensional �1D� systems, each of them corresponding to a
different transverse wave vector qx. The nonzero force-
constant matrices are then denoted as K0,0�qx�, for the matrix
connecting elements within the 1D unit cell, and K0,1�qx� and
K0,−1�qx�, for the matrices connecting the 1D unit cell to its
nearest cell on either side. The unit cell is chosen large
enough so that no interactions exist between non-
neighboring cells. In the four nearest-neighbor case consid-
ered, this corresponds to a four-atom unit cell, i.e., the ma-
trices are 12	12. In this representation, we can obtain the
independent Green’s functions gm,n�qx ,�2�, where m ,n de-
note different unit cells along the z direction. The real-space
Green’s function between two arbitrary atomic degrees of
freedom k and l in the system, can be obtained as gk,l
=�qx

eiqx�Xk−Xl�gm�k�,n�l�, where m�k� and n�l� are the corre-
sponding unit cells along the z direction associated with de-
grees of freedom k and l, respectively, and Xk and Xl are the
x coordinates of the atoms to which k and l belong.

To compute the gm,n�qx ,�2� we proceed as follows. First,
we determine the size of the area that will fully contain the
impurity cluster afterward. The largest area we considered
consisted of 6	7 unit cells, each of them containing four
atoms. The length of this area in the z direction is that of six
unit cells. The force constants matrix associated to this cen-
tral region is constructed in the hybrid representation,
Kc�qx�. The dimension of this matrix is six times larger than
that of K0,0�qx� �72	72�. Then, the self-energies �−1�qx ,��
and �1�qx ,�� acting on this central region are computed us-
ing the decimation technique of Ref. 23. This renormaliza-
tion method consists in successively doubling the size of a
cluster, to compute the local Green’s functions and self-
energies of a semi-infinite system with only a small number
of iterations. We used 24 iterations, which yields a system of
macroscopic size in the z direction. The two self-energies
corresponding to the two sides �labeled 1 and −1� of the
central part are then added to the mass normalized force
constants matrix, and the Green’s function is computed as

gm,n�qx,�
2� = ��2I − Kc�qx� − �−1�qx,�

2� − �1�qx,�
2�
−1.

�9�

In this equation, �2 is a real quantity since the self-energies
already include the necessary imaginary component. The
standard small imaginary part of the frequency is only intro-
duced in the decimation algorithm when computing the self-
energy, where �2 needs to be replaced by �2+ i��. In the
computations presented we used �=5 THz.

Since the q vectors are considered only along one of the
dimensions, this approach requires a much smaller number
of q points, than if we did the full calculation in real space �N
points in the former case compared to N2 points in the latter�.
In addition, our hybrid method yields the Green’s function
directly, without any need to Hilbert transform to obtain the
real part. For these reasons, we find this approach to be more
convenient than the approach based on Hilbert transforming
the density of states obtained by root sampling. Although the
cross section is independent of the method used to compute
the Green’s function, it would be interesting to compare re-
sults using the latter approach. Nevertheless, such study falls
out of the scope of the present paper.

We used a grid of 100qx points in the x direction. After
computing the perfect crystal’s Green’s-function matrix in
the selected region, we introduce the perturbation induced by
the scattering cluster on the force constants matrix. This per-
turbation matrix is defined in real space as the difference
between the force constants in the system with the impuri-
ties, and the force constants of the perfect crystal, V�K�
−K0. Thus, V is nonzero only in a defined region of space
around the impurity cluster. In the case of isotope impurities,
we have

Vk,l = ��MkMl

Mk�Ml�
− 1�Kk,l, �10�

where Mk denotes the mass of the atom to which degree of
freedom k belongs.

We then compute the T matrix for each cluster configura-
tion as

T��2� = �I − Vg��2�
−1V . �11�

Finally the total cross section is obtained using Eq. �8�.

V. RESULTS

A. Cross sections

The calculated total scattering cross sections for phonons
along the 
-M direction are shown in Fig. 3. It is clear from
the figure that at low frequency the results match the analyti-
cal expressions for the 2D Rayleigh scattering of an elastic
medium. The quadratic out of plane mode is completely de-
coupled from the linear modes, and adding any arbitrary dis-
tribution of isotopic impurities does not change this �this is
evident from Eq. �10�
. Thus, for the Rayleigh cross sections
of a cluster containing N atoms one analytically obtains

�linear =
1

4
S0

2�N
�M

M
�2

�3/c3, �12�
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�quadratic =
1

16�3/2S0
2�N

�M

M
�2

�3/2, �13�

where S0 is the surface area per atom, c is the linear mode’s
speed of sound, and �=�q2 for the quadratic mode.

If the imaginary part of the frequency is too small, the
atomistically computed cross section displays Van-Hove-
type singularities at the lowest frequencies, due to the k�

mesh used. Choosing a large enough � makes this artifact
disappear. The inset of Fig. 3 shows that �=5 THz yields
proper smooth results, although some small numerical undu-
lations still remain at the lowest frequencies.

At high frequency the atomistic results markedly differ
both from the geometric limit and from the Rayleigh analyti-
cal expression. This is especially clear for the single-
impurity case, which scatters considerably more strongly
than what the analytical approximation would predict at high
frequency.

As the cluster size is increased, the maximum frequency
where Rayleigh expressions, Eqs. �12� and �13�, are valid
shifts to lower frequencies. The case of the quadratic branch
is remarkable in this respect. Although at the lowest frequen-
cies this branch behaves in the N2 way predicted by the Ray-
leigh formula, it deviates considerably from this behavior
already at frequencies as low as 10 THz �see Fig. 4�. A
consequence of this is that the interpolation formula between
low and high frequencies developed in Ref. 6, �−1

��Rayleigh
−1 +�Geom

−1 fails badly in reproducing the actual cross
section for the quadratic branch. From Fig. 4 it is clear that
the geometrical cross section is still much larger than the
Rayleigh cross section, and therefore the approximated inter-
polation expression cannot account for the observed devia-

tion from the Rayleigh formula. All this underlines the im-
portance of performing atomistic calculations.

B. Effects on the thermal conductance

For a random distribution of scatterers the phonon life-
time is directly related to the scatterer’s total cross section by

−1���=vg������� /A, where 1 /A is the areal density of scat-
terers. Reference 4 directly applied this to evaluate the ther-
mal conductivity of a nanocomposite, using the elastic me-
dium cross sections given by the optical theorem, and the
interpolating scheme to link with the geometric limit. Strictly
speaking however, it is not correct to employ the total cross
section when evaluating the bulk material’s thermal conduc-
tivity. For transport involving one phonon branch, the proper
solution to the Boltzmann equation yields the thermal con-
ductivity in terms of the transport cross section, which coin-
cides with the total cross section only if scattering is equi-
probable in all scattered directions.3 In the presence of
multiple branches, a full solution of the Boltzmann equation
is required. In addition, anharmonic interactions turn the
problem into an inelastic one, considerably increasing its
computational difficulty. Localization may also be an issue,
although it has been shown that localization effects, if they
appear, would be masked by ballistic effects when the
samples are finite.8,9

In the present work, we will therefore not address “bulk”
samples but finite systems of up to a few micrometers in
length. In this way, an important part of the transport is bal-
listic and scattering effects come in as a resistive correction.
Therefore all the aforementioned problems are much less of
a concern. Localization and multiple-scattering effects,
which may occur mostly in the high frequencies, will not
show up in a thermal conductance measurement. Further-
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FIG. 3. �Color online� Total scattering cross section divided by
number of atoms in the cluster, versus angular frequency, for 1, 6,
13, 20, and 30 13C isotope clusters. The largest, medium, and small-
est cross section of each cluster correspond to the quadratic, trans-
verse, and longitudinal phonon branch, respectively. Solid line: ana-
lytical expression, Eq. �12�, for longitudinal branch with 1 isotope
impurity. Inset: comparison between low-frequency results obtained
with �=0.005 THz �red lines� and �=5 THz �black lines�. Spuri-
ous singularities develop if the imaginary part of the frequency is
taken too small.
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more, we will restrict ourselves to cryogenic temperatures, at
which anharmonic scattering can be quite neglected and the
phonons’ scattering cross section is mostly isotropic. Thus, in
this quasiballistic finite length limit, it is reasonable to em-
ploy the total cross section of the individual cluster scatterers
to estimate their effect on thermal conductance.

The correct scattering cross section must nonetheless take
into account the change in overall density of the medium.
The coherent-potential approximation24 in the limit �M
�M, which is valid here, yields the following mean-free
path of a phonon in branch i with wave vector q� �Refs. 19
and 25�:

�i
−1�q�� = x�1 − x���q��/A , �14�

where x is the isotope volume fraction in the sample. We are
considering randomly distributed scatterers and we thus ne-
glect interference effects between scatterers.

Below 50 THz the phonon dispersion and scattering cross
sections are isotropic to a good approximation. In tempera-
ture terms this corresponds to 50 THz /kB�382 °K, five
times larger than the highest temperature we consider here
�77 K�. So at 77 K and below it is reasonable to consider the
phonon mean-free path to be isotropic, depending only on
the branch and frequency but not on direction. Then, in a
sample with perfect contacts and a resistive region of length
L, in the presence of elastic scattering only, the thermal con-
ductance per unit cross section is approximately26

�cond =
1

D
�

0

�

��
df

dT�
i
�1 +

4

�

L

2�i����
−1

Ti���d�/2� , �15�

where i extends to the three acoustic and three optical
branches, and D=3.35 Å is the graphitic interlayer spacing.
Ti���= 1

2�BZ���−�i�q��
�
d�i�q��

dqx
�dq� /2� is the ballistic trans-

mission associated with branch i, where the integral is per-
formed within the two-dimensional first Brillouin zone.27 �i
is defined in terms of the scattering cross section for branch
i �Eq. �14�
. In the limit L→0 Eq. �15� yields the ballistic
conductance, the inverse of which is referred to as the intrin-
sic resistance of the contact.28 It is convenient to express the
results in terms of an equivalent thermal conductivity that
can be compared to that of graphite, ��L�cond.

Figure 5 shows the computed thermal conductivity for
different cluster sizes up to 30 atoms. In each case, five val-
ues are given corresponding to isotope concentrations �or
volume fractions� of 10%, 20%, 30%, and 40%. At liquid
nitrogen temperature �77 K� an important effect due to clus-
tering is noticeable already for a sample 2.5 �m long, lead-
ing to an additional �450 W /mK reduction in thermal con-
ductivity with respect to the independent scatterer case. At
10 K, a much longer sample of 30 �m is needed to observe
a similar effect since the low-frequency phonons active at
this temperature have very long mean-free paths. If 14C iso-
topes are used instead, effects can be up to four times stron-
ger. Graphite samples are expected to display qualitatively
similar clustering effects as those shown in graphene. The
latter has been chosen here for computational simplicity but
graphite might perhaps be a simpler experimental candidate
for the verification of these effects.

The thermal-conductivity reduction depends on cluster
size more weakly than N2, mainly due to the anomalous de-
pendence of the out of plane branch cross section with N in
the midfrequency range, discussed earlier. If increasingly
larger clusters are considered while keeping a constant over-
all isotope concentration, one can expect further reduction in
the thermal conductivity down to a minimum value for a
given cluster size. For even larger clusters, the cross section
will eventually become equal to the geometric limit at virtu-
ally all frequencies, thus scaling like �N. When this is the
case, the inverse mean-free path given by Eq. �14� goes as
�−1�1 /�N �because A�N� and so the thermal conductivity
will start increasing rather than decreasing with N. A similar
minimum has been predicted for three-dimensional nanopar-
ticles in bulk materials.5 Determining the large cluster sizes
necessary to reach such minimum is a very computationally
demanding problem beyond the scope of this paper.

C. A suggested route toward synthesizing isotopic-cluster
graphene

“Isotope clusters” might at first sight seem like an aca-
demic problem. Isotopes do not chemically differ among
themselves so they do not naturally tend to form clusters.29

Thus one might think that their distribution in a crystal will
always be random. It may nonetheless be conceivable to
grow graphite and graphene, containing isotope aggregates
of regular size. A suggestion on how this could be achieved
is by chemical vapor deposition of hydrocarbons. Two dif-
ferent sources of the same hydrocarbon but containing, re-
spectively, pure 12C and 13C or 14C, would be simultaneously
deposited to fully cover a single-crystal metal surface �such
as Pt�. Subsequent annealing results in the dehydrogenation
of the adsorbed molecules and graphitization of the carbon
atoms covering the metal. The obtained graphite layers might
contain isotope clusters with roughly the number of carbon
atoms in the precursor molecules. This technique for produc-
ing thin graphite layers is well known30 but we are not aware
of any attempts at producing isotope clusters in the way we
have depicted.
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FIG. 5. �Color online� Thermal conductivity versus number of
atoms in cluster for a 2.5-�m-long sample at a 77 K �filled sym-
bols� and for a 30-�m-long sample at 10 K �empty symbols� for
different 13C isotopic concentrations.
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An alternative and perhaps more promising approach can
also be suggested, replacing the hydrocarbons by C60
fullerenes. The fullerene approach has been successfully ap-
plied to produce controlled isotopic domains in carbon nano-
tubes, where it was shown that the isotopes remain pinned to
the original location of the fullerenes.31,32 In the case of car-
bon nanotubes, important effects of clustering on the thermal
conductivity have been theoretically predicted.10

It might then be possible to mix two isotopic sources of
fullerenes similarly as described above, to produce graphitic
structures with isotopic clusters. Graphitization in this way
has been recently demonstrated.33 Graphene can be subse-
quently isolated via known techniques. It has already been
demonstrated that micrometer long graphene sheets can be
suspended to measure their thermal conductivity.34 The same
approach may be used to characterize the thermal conductiv-
ity of the isotopic-cluster graphene samples just described.

VI. CONCLUSIONS

An ab initio atomistic calculation of the scattering cross
section of different clusters was presented, showing consid-

erable structure and various features qualitatively different
from the predictions of analytical approaches previously em-
ployed in the literature. Clustering is found to lead to a very
marked observable reduction in the thermal conductivity of
graphene, well below the disordered isotope limit. Due to the
chemically inactive character of isotopic impurities, experi-
ments on isotopic-cluster graphene like the ones proposed
here might be useful in deepening our understanding of pho-
non behavior at the nanoscale.

Note added in proof. Graphene with defined isotopic do-
mains has been recently synthesized.37
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